压电材料作为感知电力设备放电、振动等信号的关键材料,在电力设备振动监测、放电检测、探伤、温度测量、电压传感等领域得到广泛应用。

压电材料在压电传感器件中的应用多种多样,其核心在于机械能和电能的相互转换:压电材料受机械振动(压电振动传感器)、声波传导(压电声传感器)等机械外力作用时晶格形变,引起极化状态的变化,输出传感电信号,或通过对压电材料受电场作用产生的形变进行测量来反映电场大小(压电电压传感器)。

 

压电电压传感器工作原理如图1所示,其主要基于逆压电效应,将施加于压电材料上的电信号转换为位移或者形变信号,再进一步通过其他方式进行检测,进而实现对电压信号的量测。

图1 压电电压传感器检测示意图

压电电压传感器可分为基于应力检测的压电电压传感器、基于光检测的压电电压传感器和基于电容值检测的压电电压传感器。

1 基于应力检测的压电电压传感器

压电电压传感器研究早期,K.Kawamura等使用压力传感器对压电材料的电致应变进行检测,如图2所示。检测电压峰值可达26kV,测量误差小于2%,频率测量范围0~2.5kHz。但此类传感器检测范围和精度易受附加压力传感器限制,且需额外电源供电,增加了电压传感器的复杂性,难以满足新型传感器小型化、无源、抗干扰能力强等要求,实际应用困难。

图2 基于应力检测的压电电压传感器

2 基于光检测的电压传感器

相比于基于应力检测,通过利用无源光学器件测量压电材料形变更为便捷。K.M.Bohnert等将石英压电晶体与双模光纤联用,通过检测光纤中的相干光相位变化对压电材料形变进行测量,频率测量范围50Hz~11kHz,测量电压高达520kV,但其设备体积较为庞大;另有研究人员联用PZT等高压电性能陶瓷多晶与光栅器件,将难以准确测量的压电材料形变转换为光栅中心波长变化进行检测,有效提高了测试精度。

G. Fusiek等使用多个厚度为4mm的PZT压电陶瓷片构成叠层结构,以放大压电陶瓷在同等电压下的位移大小。传感器最大量程5kV,频率测量范围50Hz~20kHz。研究者采用外加铝制结构对压电陶瓷到光纤光栅的位移进行传递,减小了对单个压电陶瓷片厚度的要求,但位移的多次传递可能引入额外的测量误差。

3 基于电容值检测的电压传感器

此外,Xue Fen等将两层极化方向相反、两端固定的PVDF压电薄膜叠加成电容的上电极,外加固定的电容下电极组成压电式电压传感器。当外加电场变化时,PVDF薄膜发生弯折电容极板结构变化,导致电容值发生变化,通过实时测量电容值来反推外加电场的信息。

尽管压电聚合物薄膜(PVDF)在厚度方向的伸缩振动谐振频率远高于普通压电陶瓷,可获得接近10MHz宽频带响应和22kV/cm的测量量程,但由于其压电系数远远小于普通的压电陶瓷,形变通常在nm级,即使使用光学器件也很难对其检测,因此使用PVDF进行电压/电场传感研究的难点在于将微纳级形变转换为其他可测、易测的物理量。